Kadir Aydin
Çukurova University, Turkey
Title: Hydroxy Gas (HHO) Addition to Fossil Fuels for Improved Performance and Lower Emissions
Biography
Biography: Kadir Aydin
Abstract
Electrolysis is the most common method used to split H2 from water and currently, 12-15% of hydrogen production globally source is presented by electrolysis. Hydroxy Gas (HHO) is a trademark and comes from the separation of water molecules H-OH that contains (theoretically) 66% H2 and 33% O2. It has high calorific value and 1 kg of HHO, is three times as potent as gasoline and eight times as potent as diesel. Also achieving of HHO gas under water electrolysis, several item affected the end product. This affected the efficiency of the HHO generators. Electrolysis uses an electrical current to split water into hydrogen at the cathode (+) and oxygen at the anode (–). Steam electrolysis uses heat, instead of electricity, to provide some of the energy needed to split water and can make the process more energy efficient. In this study, HHO is mixed with air and gasoline in inlet manifold in a gasoline engine and HHO is mixed with air and natural gas during induction stoke and diesel fuel is injected into the cylinder during injection period in a pilot injection diesel engine to measure engine performance and exhaust emission parameters. HHO gas addition to the fossil fuels (gasoline, diesel fuel and natural gas) improved engine performance parameters (power, torque and specific fuel consumption) and reduced exhaust emission parameters. The average power increment in test engines during experiments is bigger than the electrical power consumed and fuel economy obtained with the aid of HHO system as well. This indicates that HHO system is efficient.